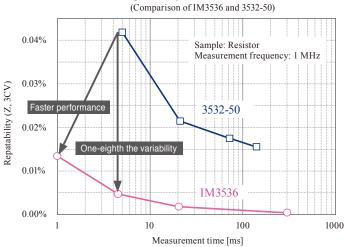
ΗΙΟΚΙ

DC, 4 Hz to 8 MHZ Measurement frequency

HIGKI


The new standard

Introducing an LCR meter that brings exceptional specifications and cost performance to a wide range of applications, from R&D to production lines

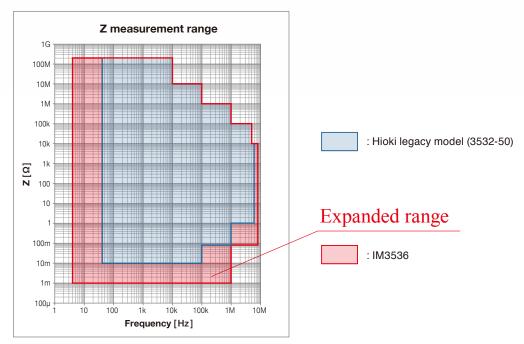
Test fixtures and probes sold separately. Photograph depicts IM3536 used in combination with the SMD Test Fixture 9677.

One-eighth the precision variability and five times the measurement speed of legacy models means dramatically improved productivity.

High speed Stability

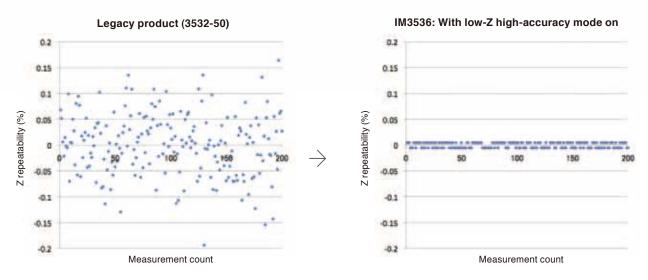
Repeatability and measurement time

CE


Raising the Bar for Basic Performance

High accuracy $\pm 0.05\%$ rdg.High speed1 ms (fastest time)

Guaranteed accuracy range from $1 \text{ m}\Omega$


The IM3536 delivers a guaranteed accuracy range that starts at 1 m Ω . Furthermore, the frequency band has been expanded to 8 MHz, broadening the array of measurement targets with which it can be used compared to legacy products.

Low-impedance measurement with unmatched repeatability

The IM3536 delivers repeatability that is an order of magnitude better than that of previous products. This level of performance makes the instrument ideal for use in applications such as electrolytic capacitor low-ESR measurement and power supply coil impedance testing, the latter of which demands excellent frequency characteristics.

Graphs illustrate the results of measuring a resistance of 1 m Ω 200 times under the following conditions:

- Frequency: 1 kHz
- Measurement speed: FAST
- Measurement speed. TAST • Measurement range: $100 \text{ m}\Omega$

З

From measurement to analysis

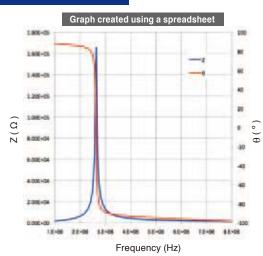
Applications in development evaluation and research

Ideal for use in R&D work requiring a wide range of measurement conditions and for evaluation of devices under conditions of actual use

The IM3536 enables measurement conditions to be varied over a wide range, for example to analyze a coil's resonance point while varying the frequency or to perform measurement while changing the measurement signal during evaluation of a sample that exhibits signal dependency.

Variable frequency DC, 4 Hz to 8 MHz

Variable voltage 10 mV to 5 V rms (V mode/CV mode)


Variable current 10 µA to 100 mA rms (CC mode)

Example of measurement while varying the frequency from 1 MHz to 8 MHz

frequencies pre-configured on a computer.

For more information, see page 5.

DC bias function: Measure under conditions simulating actual use or in accordance with industry standards

Internal DC bias (capacitor only)

A DC voltage can be superposed onto the measurement signal while measuring a capacitor.

The generated voltage can be varied from 0
V to 2.50 V DC (10 mV resolution).
(Low-Z high-accuracy mode: 0 V to 1 V)

External DC bias

(with support for L or C measurement, depending on the unit)

Requires a separate external DC bias power supply.

DC BIAS VOLTAGE UNIT 9268-10

0.00560

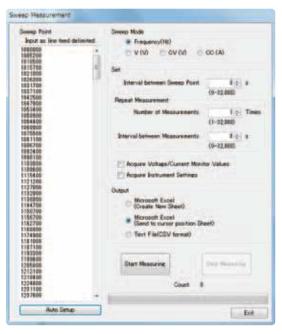
Measurement frequency range: 40 Hz to 8 MHz Maximum applied voltage: ±40 V DC

DC BIAS CURRENT UNIT 9269-10

Measurement frequency range: 40 Hz to 2 MHz Maximum applied current: 2 A DC * An internal 300µH inductance is connected in parallel to the DUT.

Calculate conductivity and the dielectric constant

The conditions used to calculate conductivity and the dielectric constant can be set easily using the instrument's touch screen.


Enter the following parameters: _ Conductor length (LENGTH) Conductor cross-sectional area (AREA)

The instrument's touch keypad makes it easy to enter numbers.

Evaluate samples that exhibit signal dependence using free application software

The bundled application allows you to save measurement data from the LCR meter as a Microsoft Excel or text file (CSV format) using the instrument's USB, LAN, GP-IB, or RS-232C interface. Standard accessory

- Frequency characteristics (measurement while varying the frequency)
- Voltage characteristics (measurement while varying the voltage)
- $\ensuremath{\cdot}$ Current characteristics (measurement while varying the current)
- Time interval measurement (measurement at a specified time interval)
- · Capture measured value when the RETURN key is pressed (one-off measurement)

Data saved in CSV format

Sweep points are generated automatically once you set the start value, end value, and number of intermediate data points.

Simple, automatic configuration of sweep points

Stop Value	161
Data count	401-0

1	3416			18		
	A	8		C	D	E
1	Frequency/,	AC Stat	135	Z	PH	
2	1000000		10	1.54E+03	87347	
2	1005200		0	1.556403	87.819	
4	101-0500		10	1.568+00	87.932	
5	1015700		0	1.57E+00	87.901	
6	\$621000		0	1 586+03	87.893	
7	1026500		10	1.50€+00	87.895	
0	1031700		-0	1.612+03	87.882	
6	1037100		0	1.622403	87.871	
10	1042500		0	1.63E+03	87.87	
11	1047900		0	1 64E+03	87.859	
12	1053400		10	1 652+03	87.85	
12	1058900		0	1.66E+03	678A5	
14	1064400		0	1.685+03	87.833	
15	1068900		0	1.69E+02		
19	1075500		0	1.70E+00	\$7.014	
17	1081100		0	1715+00	87.806	
10	1086700		0	1.736400	87,798	
19	1002400		0	1.74E+00	87.785	
20	1008100		0	1 758+05	87 774	
31	1103800		0	1 768+03	87.759	

Simplifying the process of building production lines Increase convenience and efficiency

Perform two jobs with one instrument to save space and speed up the process of building a system

Continuous measurement function

Suppose you wish to test power supply inductance L-Q at 1 kHz plus DC resistance (Rdc). The IM3536 steps up by delivering high-speed, continuous measurement of different conditions with a single instrument.

Q measurement

By progressively loading a series of measurement conditions saved using the panel save function and performing measurements under multiple sets of different conditions, you can now test one component under multiple conditions during a single test session.

Display saved panels as a list and load them quickly

Panel save and load functions

Ensure reliable application of settings during setup changes

Target A: Measurement conditions and judgment standards

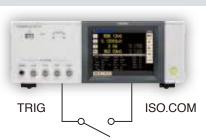
- Measurement parameters: Ls, Q, Rdc
- Measurement frequency: 1 kHz
- Constant current: 1 mA

Target B: Measurement conditions and judgment standards

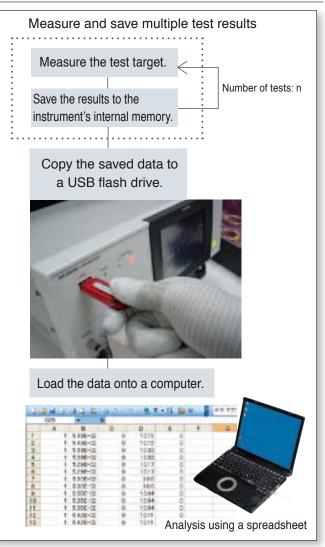
- Measurement parameters: Z, $\boldsymbol{\theta}$
- Measurement frequency: 1.5 kHz
- Constant current: 0.5 mA
- Constant current. 0.5 mA

Save and load measurement conditions and compensation values.

- Easy-to-view list display Filename
- Measurement parameter name

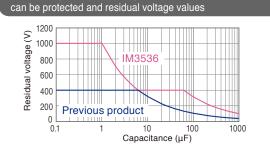

Load or save using the touch screen keys

Analyze the data you need on a computer quickly and easily



Save 32000 measurement results, copy them to a USB flash drive, and load them onto a computer. You can then open the measurement data using a spreadsheet to analyze variations and manage test data.

Even if both hands are full


Select [External trigger] as the trigger setting and then control instrument operations such as measurement and saving of data from an external device such as a foot switch via the EXT. I/O terminal's TRIG signal.

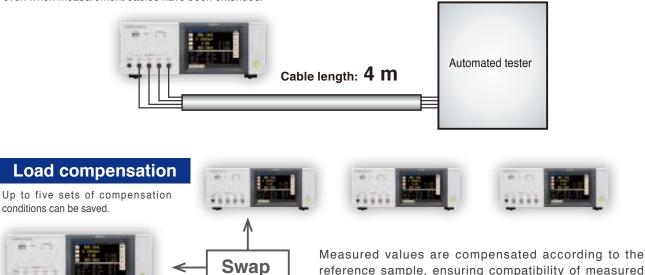
Improved protective functionality to reduce maintenance downtime

Residual charge protection function

The IM3536 features an enhanced residual charge protection function that is designed to protect the instrument's internal circuitry from a capacitor discharge voltage in the event a charged capacitor is inadvertently connected to a measurement terminal.

Relationship between the capacitance from which LCR meters

SCALING.

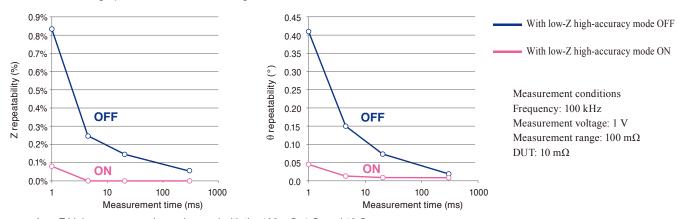

Functionality supporting more accurate measurement Delivering reliability for production-line testing

Compensate for anticipated errors

M 7538 COLMETER

Cable length compensation

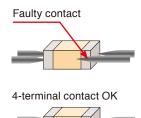
Select from cable length settings of 0 m, 1 m, 2 m, and 4 m, guaranteeing accuracy even when measurement cables have been extended.



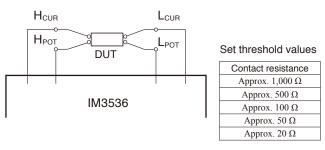
Measured values are compensated according to the reference sample, ensuring compatibility of measured values from multiple devices on production lines and when swapping out devices, for example when a unit needs to be calibrated.

HIOKI

Low-Z high-accuracy mode for increasing the maximum applied current

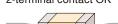

When using low-Z high-accuracy mode, the output resistance changes to 10 Ω , allowing more current to flow to the sample being measured so that high-precision measurement is guaranteed.

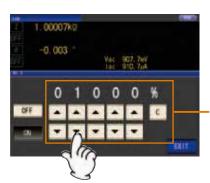
Low-Z high-accuracy mode can be used with the 100 m Ω , 1 Ω , and 10 Ω ranges. This mode is especially effective when performing low-inductance L measurement of power supplies and ESR measurement of aluminum electrolytic capacitors.


Contact check function

Detect faulty contact with the sample during four-terminal measurement.

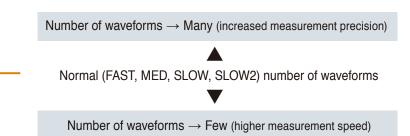
The contact check function measures the contact resistance between L_{POT} and L_{CUR} and between H_{POT} and H_{CUR} and displays an error if the readings are greater than or equal to a preset threshold.

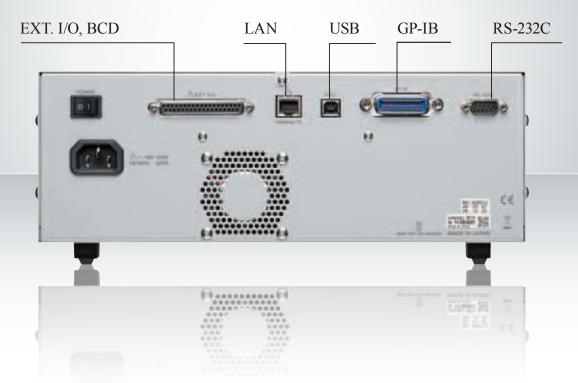

 $\begin{array}{l} \mathsf{H}_{\mathsf{CUR}} \text{ terminal: Current generation terminal} \\ \mathsf{H}_{\mathsf{POT}} \text{ terminal: HI voltage detection terminal} \\ \mathsf{L}_{\mathsf{POT}} \text{ terminal: LO voltage detection terminal} \\ \mathsf{L}_{\mathsf{CUR}} \text{ terminal: Current detection terminal} \end{array}$


Hi-Z reject function

Detect contact errors during two-terminal measurement.

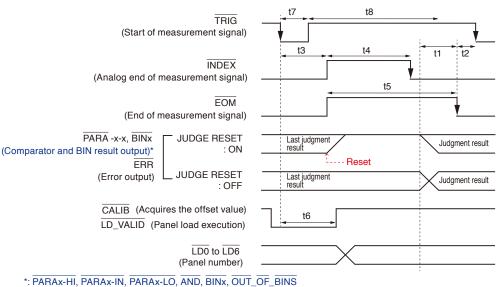
The Hi-Z reject function outputs an error if the measurement result exceeds a preset judgment standard. This capability enables the instrument to detect poor contact when performing measurement using a two-terminal fixture.


The judgment standard is calculated based on the measurement range and judgment reference value (valid setting range: 0% to 30,000%).


The instrument's touch keypad makes it easy to enter judgment reference values.

Improve measurement precision with the waveform averaging function

The IM3536's waveform averaging function lets you set the number of measured waveforms for each frequency band determined by the measurement speed setting (FAST, MED, SLOW, SLOW2).



Access an extensive range of interfaces in all model variants

EXT. I/O

EXT. I/O allows you to output the measurement complete signal and judgment results signal and to control the instrument by inputting signals such as a measurement trigger signal. All signal lines are isolated from the instrument's measurement and control circuitry for maximum noise resistance.

Example of EXT I/O timing (LCR mode)

t1: From Comparator, BIN Judgement Result to EOM (LO): Setting value for delay time *1 (Settable range: 0.0000 s to 0.9999 s) ; 40 µs

t2: From EOM width (LO) to TRIG (LO): Minimum time from end of measurement to next trigger *2; 400 µs

t3: From TRIG (LO) to INDEX (HI): Time from trigger to circuit response *3; 400 µs

- t4: INDEX width (HI): Analog measurement time (=Minimum chuck time), switching chuck with INDEX (LO) is possible **; 1 ms
- t5: EOM width (HI): Measurement time *4 ; 1.5 ms

t6: From TRIG width (LO) to LD-VALID (HI), CALIB (HI): Time to panel load execution and DC adjustment request signal detection: at least t3

t7: Trigger pulse width (LO time) ; At least 100 µs

t8: Trigger off (HI time) ; At least 100 µs

*¹. There is an apporoximate error of 100 µs in the delay time entered for Judgement Result ↔ EOM for the setting value. t1 is the reference value for when the setting value is 0.0000 s.

*2. t2 is the reference value for when trigger input for during measurement is disabled.

*3. Additional time is required when loading panel numbers using the panel load function.

*4. Reference value for Measurement frequency: 1 kHz, Measurement speed: FAST, Range: HOLD

EXT. I/O signal list

■ IM3536 connector signal assignment (LCR mode operation)

PARA1-LO, D1-PARA3-IN, D2-PARA1-HI, D1-

8

0 0

LD_VALID

0 о

CALIE LD0 LD2

22

0

BIN7

AND BIN9 D3-D2-

• Input signals

	-	
TRIG	: External trigger	
$\overline{\text{LD0}}$ to $\overline{\text{LD6}}$: Select panel number	
LD_VALID	: Execute panel load	
Cl	: During BCD output, toggle between	
C2 high-order and low-order digits		
	: During BCD output, toggle between	
	the No. 1 and No. 3 parameters	
CALIB	: DC adjustment request	

Output signals

EOM	: End of measurement
INDEX	: End of capture
ERR	: Measurement error output
ISO_5V	: Isolated 5V power output
ISO_COM	: Isolated common signal ground

• Output signals (common signal line)

PARAx-HI, PARAx-IN, PARAx-LO (x=1,3), AND	: Comparator judgment result output	
BIN1 to BIN10, OUT_OF_BINS	: BIN judgment result output	
$ \begin{array}{r} \hline \hline D1-0 \\ \hline D2-0 \\ \hline D2-0 \\ \hline D3-0 \\ \hline D3-0 \\ \hline D4-0 \\ \hline to \\ D4-3 \\ \hline \end{array} $: BCD output signal	

D4-3 BIN10, D3-1 ISO_COM BIN8, D2-3 EOM BING, PARA3-LO, D2-1 BINA, PARA3-HI, D1-3 BIN2, PARA1-IN D1-1

3-

0

OUT OF BINS

4 7

19 O Ö

> 0 0 С

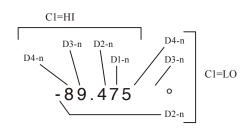
Signal assignment is different during continuous measurement mode. Signal logic is 0 V to 0.9 V for LO level and 5 V to 24 V for HI level.

Connectors

C

Connectors to use (unit side)	: 37-pin D- sub female connector with #4-40 inch screws
Compliant connectors	: DC-37P-ULR (solder type) and DCSP-JB37PR (pressure
	weld type)
	For information on where to obtain connectors,
	consult your nearest HIOKI distributor.

Electrical specifications


Input signals	Input type	Optocoupler-isolated, non-voltage contact inputs (current sink, active-low)
	Input asserted (on) voltage	0.9 V or less
	Input de-asserted (off) voltage	OPEN or 5 V to 24 V
	Input asserted (on) current	3 mA/ch
	Maximum applied voltage	30 V
Output signals	Output type	Isolated NPN open-collector outputs (current sink, active-low)
	Maximum load voltage	30V
	Maximum output current	50 mA/ch
	Residual voltage	1 V (10 mA), 1.5 V (50 mA)
Internally isolated	Output voltage	4.5 V to 5.0 V
power supply	Maximum output current	100 mA
	External power input	none

BCD

LCR mode output signals operate in two modes: judgment mode and BCD mode. In BCD mode, measured values for the No. 1 parameter and the No. 3 parameter are output using the BCD signals. *LCR mode only

The BCD high-order digit and low-order digit (polarity and ERR information) can be switched with the C1 signal.

$\overline{C1}$	$\overline{\mathrm{D4}}$	$\overline{\text{D3}}$	$\overline{\text{D2}}$	D1
HI (high-order)	No. 6 digit data	No. 5 digit data	No. 4 digit data	No. 3 digit data
LO (low-order)	No. 2 digit data	No. 1 digit data	Polarity	ERR

Interfaces

Control the instrument with communication commands from a computer via the USB, LAN, GP-IB, or RS-232C interfaces.

USB		LAN		
Connector	USB Type B receptacle	Connector	RJ-45 connector	
Electrical specification	s USB2.0 (High Speed)	Transmission method	d 10Base-T/100Base-T automatic detection	
		Protocol	TCP/IP	
GP-IB		RS-232C		
	24-pin Centronics type connector	RS-232C	D-sub 9-pin connector	
GP-IB Connector Standard	24-pin Centronics type connector IEEE-488.1 1987		D-sub 9-pin connector Hardware/Software	
	1 71	Connector	1	

Measurement parameters and measurement conditions

	- · F					
Measurem		Z Υ θ X G B Q Rdc	Impedance Admittance Phase angle Reactance Conductance Susceptance Q-factor DC resistance	Rs Rp Ls Lp Cs Cp D σ ε	Equivalent parallel resistance Equivalent series inductance Equivalent parallel inductance Equivalent series capacitance	
Display range		Z Y θ X G B Q Rdc	0.00 m to 9.99999 GΩ 0.000 n to 9.99999 GS ±(0.000° to 180.000°) ±(0.000 m to 9.99999 GΩ) ±(0.000 n to 9.99999 GS) ±(0.000 n to 9.99999 GS) ±(0.00 to 9999.99) ±(0.00 m to 9.99999 GΩ)	Rs Rp Ls Lp Cs Cp D Δ% σ ε	±(0.00000 to 9.99999)	
Measurabl	e range	1 mΩ t	o 200 MΩ			
Output im	pedance	Norma	l mode: 100 Ω, Low imp	edance	e high accuracy mode: 10Ω	
	Range	4 Hz to	8 MHz			
Measurement frequency 4.00 Hz to 999.99 Hz 10 mHz steps 1.0000 kHz to 9.9999 kHz 100 mHz steps 10.000 kHz to 99.999 kHz 1 Hz steps 10.000 kHz to 99.999 kHz 10 Hz steps 10.000 kHz to 99.999 kHz 10 Hz steps 10.000 kHz to 99.99 kHz 10 Hz steps 10.000 kHz to 80.000 MHz 10 Hz steps				nHz steps steps z steps		
	Accuracy		of setting or less			
Measurement signal level [V mode] [CV mode]	Range	[Normal mode] 4 Hz to 1.0000 MHz: 10 mV to 5 V rms (maximum 50 mA) 1.0001 MHz to 8 MHz: 10 mV to 1 V rms (maximum 10mA) [Low impedance high accuracy mode] 4 Hz to 1.0000 MHz: 10 mV to 1 V rms (maximum 100 mA)			ms (maximum 10mA) ode]	
	Resolution		10 mV rms to 1.000 V rms 1 mV rms steps 1.01 V rms to 5 V rms 10 mV rms steps			
Measurement signal level [CC mode]		[Normal mode] 4 Hz to 1.0000 MHz: 10 μA to 50 mA rms (maximum 5 V) 1.0001 MHz to 8 MHz: 10 μA to 1 mA rms (maximum 1 V) [Low impedance high accuracy mode] 4 Hz to 1.0000 MHz: 10 μA to 100 mA rms (maximum 1 V)				
	Resolution	10 µA	rms steps			
Monitor fu	inction	1	or voltage range: 0.000 or current range: 0.000			
DC resista measurem		Measu	rement signal level: Fi	xed a	t 1 V	
DC bias me	asurement	Generating range: DC voltage 0 V to 2.50 V (10mV resolution) In low Z high accuracy mode: 0 V to 1 V (10 mV resolution)				

Measurement modes

Measurement modes	LCR mode: Measurement using a single set of conditions. Continuous measurement mode: Continuous measurement using previously saved conditions
----------------------	---

LCR mode

	Bin measurement: 10 categories for 2 measurement parameters Judgment method: Set as absolute values, percentage, or deviation percentage
Measurements	Comparator measurement: Hi, IN, and Lo judgments for 2 parameters Judgment method: Set as absolute values, percentage, or deviation percentage
Display	Zoom display function: Enlarged display of measured values Number of display digits setting: Allows you to set the number of display digits for measured values for each measurement parameter. (Valid setting range: 3 to 6 digits)

Continuous measurement mode

Measurements	Performs continuous measurement using measurement conditions that have been saved using the panel save function. Measurement is started by an external trigger (any of the three types described below)
Maximum number of measurements	60

Speed and accuracy

1	5
Measurement speed	FAST/MED/SLOW/SLOW2
Averaging	Valid setting range: 1 to 256 (in steps of 1)
Basic accuracy	Z: $\pm 0.05\%$ rdg. θ : $\pm 0.03^{\circ}$ (representative value)
Guaranteed accuracy range	$1 \text{ m}\Omega$ to 200 M Ω (impedance)
Guaranteed accuracy period	1 year
Warm-up time	60 minutes
Terminal structure	4-terminal structure

Supplementary functionality

o approximenter	
Trigger function	Uses a specific signal to time the start of measurement. [Trigger types] Internal trigger: Automatically generates a trigger signal internally to repeat measurement. External trigger: Allows you to control the instrument's measurement operation by inputting a trigger signal from an external device (trigger sources: manual, communications commands, EXT. I/O). [Trigger delay] Sets the delay time from trigger input to measurement. Setting range: 0.0000 s to 9.9999 s [Trigger synchronous output] Outputs the measurement signal after trigger input and applies it to the sample during measurement only. Allows you to set a wait time until data is acquired. Setting range: 0.0000 s to 9.9999 s
Compensation function	[Open/short compensation] [Load compensation] Number of sets of compensation conditions: Up to 5 [Cable length compensation] Cable length settings: 0 m, 1 m, 2 m, 4 m [Correlation compensation] Compensation of display values based on user-input compensation coefficient
Contact check	 [4-terminal contact check] Performs a contact (disconnection) check between H_{CUR} and H_{POT} and between L_{CUR} and L_{POT}. [High-Z reject function] Detection of OPEN state during 2-terminal measurement.

Recording and interface

Memory function	Measurement result items (maximum 32000 items) can be saved to the instrument. Memory can be read using communications commands or a USB flash drive.
Panel save and load functions	Measurement conditions: Up to 60 Compensation values: Up to 128
Interfaces	EXT. I/O(HANDLER) ,USB, USB flash drive, LAN, GP-IB, RS-232C
BCD output	[Output from EXT. I/O connector] Generates BCD output for the No.1 and No.3 parameter measured values. *Input and output signals are set to BCD mode (selection with judgment output).

Display and sound

Key lock function	Lock operation of the instrument using the touch screen. Unlock by entering a passcode.
Beep tone	Enable or disable for judgment results and key operation.
Display settings	LCD display on/off Off: The display turns off 10 sec. after the touch panel is last touched.
Display	5.7-inch color TFT with touch panel
Other	
Operating temperature and humidity	0°C to 40°C (32°F to 104°F), 80% RH, non-condensing
Storage temperature and humidity	-10°C to 50°C (14°F to 122°F), 80% RH, non-condensing
Operating environment	Indoors, Pollution Degree 2, altitude up to 2000 m (6562-ft.)
Power supply and maximum rated power	100 V AC to 240 V AC (50/60 Hz), 50 VA
Dielectric strength	1.62 kV AC for 1 min. between power line and ground line
Standards compliance	EMC: EN 61326, EN 61000 Safety: EN 61010
Dimensions and Mass	Approx. 330 W × 119 H × 230 D mm (12.99 W × 4.69 H × 9.06 D in) , approx. 4.2 kg (148.1 oz.)
Accessories	Power cord ×1, Instruction manual ×1, LCR application disc (Communications user manual) ×1

Measurement accuracy (Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year) Measurement accuracy = Basic accuracy × C × D × E × F × G

Measurement accuracy is calculated based on the following equation:

[C: L	evel coefficient] V: Setting value (c	correspor	nds to when	V mode)	[V]
	Measurement level		1 V		
	Coefficient (DC resistance measure	ement)	1		
	Measurement level	0.010 V	to 0.999 V	1 V	1.001 V to 5 V
	Coefficient (AC measurement)	1+	0.2/V	1	1+0.2/V
[D: N	Measurement speed coefficient]				

	Measurement speed	FAST	MED	SLOW	SLOW2
Coefficient	DC resistance measurement	4	3	2	1
	AC measurement	8	4	2	1

Basic accuracy

Accuracy is calculated based on coefficients A and B from the basic accuracy chart shown below.

1 kΩ range or higher

Basic accuracy= $\pm \left(A+B \times \left| \frac{10 \times Z x}{Range} - 1 \right| \right)$

Zx : Impedance of the measurement conductor

A: Noted in basic accuracy chart. (Upper value: Z accuracy [% rdg.]; lower value: 0 accuracy [°]) B: Noted in basic accuracy chart. (Upper value: Z accuracy [% rdg.]; lower value: θ accuracy [°])

A is the accuracy of R when DC (\pm % rdg.)

B is the coefficient for the resistance of the sample

Range

100 O range or lower

Basic accuracy= \pm (A+B×

Basic accuracy

Range	Guaranteed ac- curacy rang	[C	4Hz to	99.99Hz	100Hz to	o 999.99Hz	1kHz i	to 10kHz	10.001kH	Iz to 100kHz	100.01kl	Hz to 1MHz	1.0001MF	Iz to 8MHz
100MΩ	8MΩ to 200MΩ	A=1	B=1	A=6 A=5	B=5 B=3	A=3 A=2	B=2 B=2	A=3 A=2	<mark>B=2</mark> B=2						
10MΩ	$800k\Omega$ to $10M\Omega$	A=0.5	B=0.3	A=0.8 A=0.8	<mark>B=1</mark> B=0.5	A=0.5 A=0.4	B=0.3 B=0.2	A=0.5 A=0.4	B=0.3 B=0.2	A=2 A=2	B=1 B=1				
1MΩ	$80k\Omega$ to $1M\Omega$	A=0.2	B=0.1	A=0.4 A=0.3	B=0.08 B=0.08	A=0.3 A=0.2	B=0.05 B=0.02	A=0.3 A=0.2	B=0.05 B=0.02	A=0.5 A=0.6	B=0.1 B=0.1	A=3 A=3	B=0.5 B=0.5		
100kΩ	$8k\Omega$ to $100k\Omega$	A=0.1	B=0.01	A=0.3 A=0.2	B=0.03 B=0.02	A=0.2 A=0.1	B=0.03 B=0.02	A=0.2 A=0.1	B=0.03 B=0.02	A=0.25 A=0.2	B=0.04 B=0.02	A=1 A=1	B=0.3 B=0.3	A=2 A=2	B=0.5 B=0.3
10kΩ	800 Ω to 10k Ω	A=0.1	B=0.01	A=0.3 A=0.3	B=0.03 B=0.01	A=0.2 A=0.1	B=0.02 B=0.02	A=0.05 A=0.03		A=0.3 A=0.2	B=0.02 B=0.02	A=0.5 A=0.5	B=0.05 B=0.05	A=2 A=1.5	B=0.5 B=0.3
1kΩ	80Ω to $1k\Omega$	A=0.1	B=0.01	A=0.3 A=0.2	B=0.02 B=0.02	A=0.2 A=0.1	B=0.02 B=0.02	A=0.2 A=0.1	B=0.02 B=0.02	A=0.2 A=0.15	B=0.02 B=0.02	A=0.4 A=0.4	B=0.02 B=0.02	A=1.5 A=1.5	B=0.2 B=0.2
100Ω	8Ω to 100Ω	A=0.1	B=0.02	A=0.3 A=0.2	B=0.02 B=0.01	A=0.2 A=0.15	B=0.02 B=0.01	A=0.2 A=0.1	B=0.02 B=0.01	A=0.2 A=0.15	B=0.02 B=0.02	A=0.5 A=0.5	B=0.03 B=0.03	A=1.5 A=1.5	B=0.2 B=0.2
10Ω	$800m\Omega$ to 10Ω	A=0.2	B=0.15	A=0.5 A=0.3	B=0.1 B=0.1	A=0.4 A=0.3	B=0.05 B=0.03	A=0.4 A=0.3	B=0.05 B=0.03	A=0.4 A=0.3	B=0.05 B=0.03	A=0.8 A=0.5	B=0.1 B=0.05	A=2 A=2	B=1.5 B=1
1Ω	$80m\Omega$ to 1Ω	A=0.3	B=0.3	A=1.5 A=0.8	B=1 B=0.5	A=1 A=0.5	B=0.3 B=0.2	A=1 A=0.5	B=0.3 B=0.2	A=1 A=0.5	B=0.3 B=0.2	A=1.5 A=0.7	B=1 B=0.5	A=3 A=3	B=3 B=2
100mΩ	$1m\Omega$ to $100m\Omega$	A=1	B=1	A=8 A=5	B=8 B=4	A=5 A=3	B=4 B=2	A=3 A=2	B=2 B=1.5	A=2 A=2	<mark>B=2</mark> B=1.5	A=4 A=3	B=3 B=4		

Method of determining basic accuracy

• Calculate the basic accuracy from the sample impedance, measurement range, and measurement frequency and the corresponding basic accuracy A and coefficient B from the table above.

- The calculation expression to use differs for each of the 1 $k\Omega$ range and above and 100 Ω range and below.
- For C and L, obtain basic accuracy A and coefficient B by determining the measurement range from the actual measurement value of impedance or the approximate impedance value calculated with the following expression.

$$Zx(\Omega) \approx \omega L(H) (\theta \approx 90^{\circ})$$

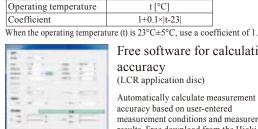
$$\approx \frac{1}{\omega C (F)} (\theta \approx -90^{\circ})$$

 $\approx R (\Omega) (\theta \approx 0^{\circ})$ (ω : 2 x π x Measurement frequency [Hz])

Calculation example

Impedance Zx of sample: 500 Ω (actual measurement value) Measurement conditions: When frequency 10 kHz and range 1 k Ω

Insert coefficient A = 0.2 and coefficient B = 0.02 for the Z basic accuracy from the table above into the expression.


Z basic accuracy =
$$0.2 + 0.02 \times \left| \frac{10 \times 500}{10^3} - 1 \right| = 0.28 (\pm \% rdg.)$$

Similarly, insert coefficient A = 0.1 and coefficient B = 0.02 for the θ basic accuracy, as follows:

$$\theta$$
 basic accuracy = 0.1 + 0.02 × $\left| \frac{10 \times 500}{10^3} - 1 \right| = 0.18 \text{ (\pm deg.)}$

Guaran	teed accuracy m	eas	urement leve	el range	The range of	of measurement levels	for which accuracy is	guaranteed varies wit	h the setting conditions
Range	Sample's impedance	DC	4 Hz to 99.99 Hz	100 Hz to 999.99 Hz	1 kHz to 10 kHz	10.001 Hz to 100 kHz	100.01 kHz to 1 MHz	1.0001 MHz to 5 MHz	5.0001 MHz to 8 MHz
100 MΩ	8 MΩ to 200 MΩ								
10 MΩ	10 M Ω to 100 M Ω]		0.101 V to 5 V			_		
10 10122	800 kΩ to 10 MΩ]		0.101 V 10 5 V		0.501 V to 5 V			
1 MΩ	1 M Ω to 10 M Ω]				0.501 V 10 5 V		_	
1 10122	80 kΩ to 1 MΩ]		0.050 V to 5 V		0.101 V to 5 V	0.501 V to 5 V		
100 kΩ	100 kΩ to 1 MΩ			0.050 v to 5 v		0.101 0 10 5 0	0.501 V 10 5 V		
100 K32	8 kΩ to 100 kΩ	(fixed)						0.101 V to 1 V	
10 kΩ	10 kΩ to 100 kΩ						0.050 V to 5 V	0.101 V 10 1 V	
10 K12	800 Ω to 10 kΩ] ≥		0.010	V to 5 V		0.050 V 10 5 V		
1 kΩ	1 kΩ to 10 kΩ			0.010	V 10 5 V			0.050 V to 1 V	0.101 V to 1 V
1 K22	80 Ω to 1 kΩ							0.030 V to 1 V	0.101 V to 1 V
100 Ω	8 Ω to 100 Ω]							
10 Ω	800 m Ω to 10 Ω]		0.050	V to 5 V			0.101	V to 1 V
1Ω	80 mΩ to 1 Ω]		0.050	v 10 5 v		0.101 V to 5 V	0.501	V to 1 V
100 mΩ	1 mΩ to 100 mΩ			0.101	V to 5 V		0.501 V to 5 V		

The guaranteed accuracy range during DC bias operation is 10 mΩ or greater. The accuracy for DC resistance (Rdc) measurement is guaranteed only when offset values are acquired. The guaranteed accuracy range varies with the sample's impedance.

[E: Measurement cable length coefficient]

Settable range for frequency

Coefficient

[F: DC bias coefficient]

Coefficient

DC bias coefficient

[G: Temperature coefficient]

0 m

1

1 m

15

0 m: Up to 8 MHz, 1 m: 8 MHz, 2 m: Up to 2 MHz, 4 m: Up to 1MHz

OFF

2 m

2

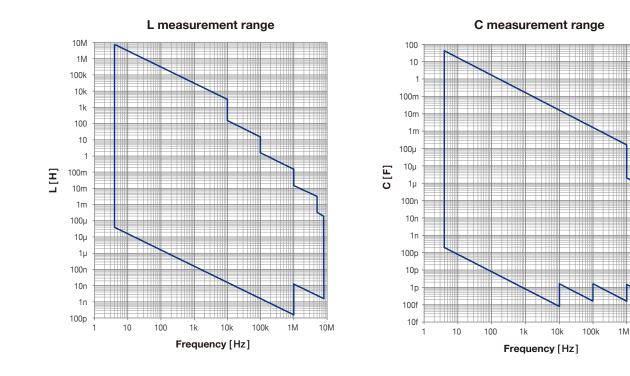
4 m

3

ON

2

Free software for calculating


(LCR application disc)

t [°C]

Automatically calculate measurement accuracy based on user-entered measurement conditions and measurement results. Free download from the Hioki website

Temperature and humidity ranges: 23°C ± 5°C, 80% RH or less (no condensation), at least 60 minutes after power ON, after performing open and short compensation

Measurable ranges

Model : LCR METER IM3536

Model No. (Order Code) (Note) IM3536

Accessories: Power cord $\times l,$ Instruction manual $\times l,$ LCR application disc (Communications user manual) $\times l$

-	100			-	
100.0	2	-	100	2	21
-		-	-	1	
				-	
-					
	-	100	- 57		
-		-	- 18	-	_
12	-	-1.	-	-	-

Free software for calculating accuracy (LCR application disc)

10M

Automatically calculate measurement accuracy based on user-entered measurement conditions and measurement results. Free download from the Hioki website

Options

RS-232C CABLE 9637

GP-IB CONNECTOR CABLE 9151-02

1.8m (5.91 ft) length

For the PC, 9pin - 9pin, cross,

2 m (6.56 ft) length

DC BIAS VOLTAGE UNIT 9268-10

Measurement frequency range: 40 Hz to 8 MHz Maximum applied voltage: ±40 V DC

DC BIAS CURRENT UNIT 9269-10

Measurement frequency range: 40 Hz to 2 MHz Maximum applied current: 2 A DC

 * An internal 300 μH inductance is connected in parallel to the DUT.

Probes and Test Fixtures for Lead Components

4-TERMINAL PROBE L2000

Measurable range: DC to 8 MHz Measurable terminal diameter: 0.3 mm (0.01 in) to 5 mm (0.2 in) Cord length: 1 m (3.28 ft)

4-TERMINAL PROBE 9500-10

Measurable range: DC to 200 kHz Measurable terminal diameter: 0.3 mm (0.01 in) to 2 mm (0.08 in) Cord length: 1 m (3.28 ft)

SMD TEST FIXTURE IM9110*

Measurable range: DC to 1 MHz For SMD with electrodes on side Measurable sample sizes: 008004 (EIA), 0201 (JIS) Please contact Hioki for information about other sizes. Direct connection type

4-TERMINAL PROBE 9140-10

Measurable range: DC to 200 kHz Measurable terminal diameter: 0.3 mm (0.01 in) to 5 mm (0.2 in) Cord length: 1 m (3.28 ft)

Test Fixtures for SMDs

SMD TEST FIXTURE 9263

Measurable range: DC to 8 MHz For SMD with electrodes on side Measurable sample sizes: 0805 to 2220 (EIA) 2012 to 5750 (JIS) Direct connection type

SMD TEST FIXTURE IM9100*

Measurable range: DC to 8 MHz For SMD with electrodes on bottom Measurable sample sizes: 01005 to 0402 (EIA) 0402 to 1005 (JIS) Direct connection type

*For more information, please see individual product catalogs.

TEST FIXTURE 9262

Measurable range: DC to 8 MHz Measurable terminal diameter: 0.3 mm (0.01 in) to 2 mm (0.08 in) Direct connection type

SMD TEST FIXTURE 9699

Measurable range: DC to 120 MHz For SMD with electrodes on bottom Measurable sample sizes: 0608 to 0805 (EIA) 1608 to 2012 (JIS) Direct connection type

PINCHER PROBE L2001*

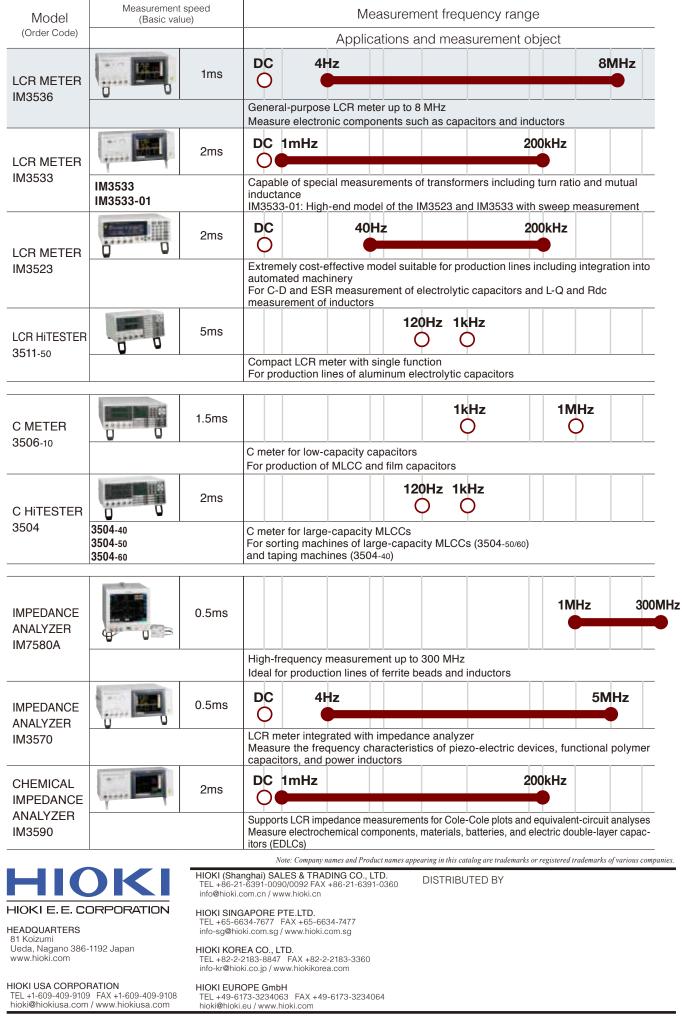
Measurable range: DC to 8 MHz Replaceable tips Measurable sample sizes: IM9901: 0603 to 2220 (EIA) 1608 to 5750 (JIS) IM9902: 0201 to 2220 (EIA) 0603 to 5750 (JIS) Cord length: Approx. 730 mm (28.74 in) *Ships standard with one set of IM9901

TEST FIXTURE 9261-10

Measurable range: DC to 8 MHz Measurable terminal diameter: 0.3 mm (0.01 in) to 1.5 mm (0.06 in) Cord length: 1 m (3.28 ft)

SMD TEST FIXTURE 9677

Measurable range: DC to 120 MHz For SMD with electrodes on side Measurable sample sizes: 0402 to 0603 (EIA) 1005 to 1608 (JIS) Direct connection type


Options for L2001 Replaceable contact tips CONTACT TIPS

IM9901

CONTACT TIPS IM9902

LCR Meter Series Full Product Lineup

All information correct as of Jan. 12, 2018. All specifications are subject to change without notice.